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Abstract— Self-organizing map (SOM) has been studied as a model of map formation in the brain cortex.
However, the original model present several oversimplifications. For example, neurons in the cortex present a
refractory period in which they are not able to be activated, restriction that should be included in the SOM
if a better model is to be achieved. Although several modifications have been studied in order to include this
biological restriction to the SOM, they do not reflect biological plausibility. Here, we present a modification in the
SOM that allows neurons to enter a refractory period (SOM-RP) if they are the best matching unit (BMU) or if
they belong to its neighborhood. This refractory period is the same for all affected neurons, which contrasts with
previous models. By including this biological restriction, SOM dynamics resembles in more detail the behavior
shown by the cortex, such as non-radial activity patterns and long distance influence, besides the refractory
period. As a side effect, two error measures are lower in maps formed by SOM-RP than in those formed by
SOM.
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1 Introduction

The self-organizing map (SOM) is presented
as a model of the self-organization of neural
connections, which is translated in the ability
of the algorithm to produce organization from
disorder [1]. One of the main properties of the
SOM is the ability to preserve in the output map
those topographical relations present in input
data [2], This property is achieved through a
transformation of an incoming signal pattern of
arbitrary dimension into a low-dimensional dis-
crete map (usually one or two-dimensional) and
to adaptively transform data in a topologically
ordered fashion [3, 2]. Each input data is mapped
to a single neuron in the lattice, the one with
the closest weight vector to the input vector, or
best matching unit (BMU). The SOM preserves
relationships during training through the learning
equation, which establishes the effect each BMU
has in any other neuron. Weight neurons are
updated accordingly to:

wn(t+1) = wn(t)+αn(t)hn(g, t)(xi−wn(t)) (1)

Where α(t) is the learning rate at time t and
hn(g, t) is the neighbourhood function from BMU
neuron g to neuron n at time t. In general, the
neighbourhood function decreases monotonically
as a function of the distance from neuron g to neu-
ron n. The SOM tries to preserve relationships of
input data by starting with a large neighbourhood
and reducing it during the course of training [2, 4].

As pointed out by Ritter [3], SOM and related
algorithms share the idea of using a deformable
lattice to transform data similarities into spatial
relationships. The lattice is deformed by applying
learning equation (1).

Although SOM has been widely applied in
data visualization and clustering, it has also been
studied as a model of the brain cortex. For ex-
ample, in [5, 6] it has been studied to understand
the map formation in visual cortex, and in [2] as a
model of brain maps from sensorial areas to corti-
cal regions. However, SOM fails to reproduce the
activity patterns present in the cortex [16, 17], al-
tough some variants, as the one proposed in [8],
in which a modification in the kernel is considered
to include surround inhibition, achieve the forma-
tion of pinwheel patterns similar to those observed
in the visual cortex. In these models, however,
influence from BMUs to neighbors is radial and
symmetrical. In [19] non-radial patterns of ac-
tivity from BMU to its neighbors are reported as
a consequence of differentiated influence based on
the relative frequency each BMU includes neurons
as neighbors. In [18], a recursive rule allows non
radial neighborhood adaptation as a consequence
of the pulling from BMUs to the direct neighbors
whereas these neighbors further pull their neigh-
bors.

Concepts analogous to the refractory period
have also been included in the SOM. For exam-
ple, in [12] the BMU is relaxed in order to mod-
ify the magnification exponent. In [20] a travel-
ing wave of activity induced in BMU allows its



neirghbors to be more likely to be the next BMU,
which can be interpreted as a refractory period for
those neurons not included in the wavefront. In
[21] an activation memory is defined for each neu-
ron, in order to define the new active neuron, and
a modification in the BMU selection mecanism is
presented, so if the memory parameter is high, the
previous winner neuron will win again unless an-
other neuron matches very close the input data,
which, again, may be seen as a refractory resctric-
tion for those neurons with a low memory parame-
ter. When applied for time sequences analysis, the
SOM incorporates a kind of refractory period that
allows the identintification of temporality [13].

In these modifications, the refractory time de-
pends on the weight modification which may not
be a biologically realistic behavior [15]. Here, we
study the effects of including a refractory period
that does not depend on this or any other quan-
tity in the neurons for the SOM, the SOM-RP, and
show that it is possible to obtain maps equivalent
to those obtained with the SOM.

2 The self-organizing map with
refractory period (SOM-RP)

Once an input vector is maped to a neuron, the
later becomes a BMU and is activated, as well
as its neighbors. Biologically, the activation of
a given neuron is achieved trough the electrical
opening of ion channels which, due to concentra-
tion gradients and charge differences between the
out and inside of the cell, drive positive ions into
the cell. This changes the potential (inside relative
to outside) of the cell, from it’s resting potential
to the activity one [14].

For this change of potential to take place, a
fair amount of positive ions must flow into the
cell, thus reversing the concentration gradient of
this ions for a moment. Since the diffusion force
plays an important role in the activation process,
this cannot take place until the concentration dif-
ference is reestablished, so when the proper chan-
nels open, positive ions will indeed flow into the
neuron. The time in which the necessary concen-
tration is not present is referred to as the absolute
refractory period, referred here as refractory pe-
riod [15, 14]. While there also exists a relative
refractory period in which the neuron can become
active but needs a far greater stimulus to do so,
we will not consider it in the present work.

In this work, we are interested in the SOM
capabilities to form maps that resemble the input
space distribution even when some of the neurons
in the network are not able to learn for a given
period of time, which affects the SOM dynamics
as the weight folding may follow other routes.

We propose a modification that allows active
neurons to enter a refractory period. By active
neurons we mean BMU and those neurons within

its neighborhood. The studied modifications are
two: in the first one, each BMU and a subset of its
neighbors enter a refractory period in which they
are not able to be affected by any other BMU for
a given time. Two variables are defined here: τ
and d. τ is the refractory period and is defined
as the number of input vectors for which an ac-
tive neuron is not able to learn trough eq. (1).
τ does not depend on the weight update value or
any other variable and is the same throughout the
learning process and for all affected neurons. d is
the radius of a hypersphere in the lattice centered
at the BMU, which defines the set of neurons that
will fall into refractory period. If d is greater than
the actual neighborhood width, then d is set to
that width.

In the second modification studied in this
work, BMUs and all its neighbors present a maxi-
mum number of times they can be affected before
entering the refractory period, named c. Once this
maximum is achieved, they enter the refractory
period and stay there for τ vectors. That is, c
acts as a delay for the neurons to enter refractory
period. Once again, τ is the same for all sleeping
neurons.

For both modifications, the refractory period
is the same for all neurons, which contrasts with
the models mentioned in the previous section.

3 Results

In order to study SOM-RP dynamics, several
thousand maps were formed for six data sets:
spiral, random and unitary circumference (2-
dimensional); iris (4-dimensional); Mexican elec-
tions (ME) (6-dimensional) and ionosphere (34-
dimensional) data sets.

In order to verify self-organization in the
SOM-RP two error measures were quantified and
compared to the error measures present in the
maps formed by eq (1). Although there are several
error measures for the maps obtained by SOM and
there is no solid definition of the energy function
[9, 10, 11], the topographic error (TE) as well as
the error quantization (EQ) were the error mea-
sures quantified for the obtained maps, as they are
good measures of the quality of topographic map-
ping and vector quantization. In order to test sen-
sitivity and self-organization, several thousands of
experiments were made for two lattice sizes, N×N
(N = 20 and 30), as well as for the initial learning
parameter 0 < α(0) ≤ 1 and for the initial neigh-
borhood size 1 < hn(g, 0) ≤ N . Practically, for
each

• learning set (circumference, spiral, random,
iris, ionosphere, ME data),

• number of epochs (between 1 and 30),

• τ (between 0 and 25)



Figure 1: TE (top) and EQ (bottom) for modifi-
cation 1 for the six data sets.

• d (between 0 and 25) (for modification 1)

• c (between 0 and 25) (for modification 2)

the initial learning parameter α(0) was chosen
randomly from (0, 1] as well as the initial neigh-
borhood width was chosen from [1, N ]. The final
learning parameter was 0.0001 (α(r) = 0.0001)
whereas the final width was decreased to 0 by
an exponential function. In both modifications,
if τ = 0 then SOM-RP is reduced to SOM.

Fig. 1 shows TE and EQ as a function of τ
and d for the first modification, whereas fig. 2
presents TE and QE as a function of c and τ for
the second modification. What is observed is that
error measures are in general lower for SOM, cor-
ner (0,0), than for SOM-RP. However, it is impor-
tant to notice that this is condensed information
for several thousand maps, with different epoch
numbers, as well as different neighborhood width
and α values.

Although TE and EQ are in general greater in
SOM-RP than in SOM, Let us consider, as shown
in fig. 3, only the 5% of maps with the lowest
TE values, here maps formed by SOM-RP (τ >
0) are much more frequent than those formed by
SOM. In some data sets, none of the low-error
maps were formed by SOM. This low-error maps
were obtained for several values of both τ and d
(or c for modification 2) (see fig. 4).

On a 30x30 lattice we performed thousands of
simulations of both SOM and SOM-RP and exam-
ined how frequent a given TE was achieved. The
results are shown in fig 5.

As we can see, on all cases, the traditional
SOM presents spikes in the frequency histogram

Figure 2: TE (top) and EQ (bottom) for modifi-
cation 2 for the six data sets.

Figure 3: The 5% of the maps with lowest TE are
considered. τ is indicated in the x axis (τ = 0 is
the original SOM), while in the y axis is considered
the number of maps for that τ that are in the
group of the maps with very low errors. The first
six figures are for modification 1 and the last six
for modification 2.



Figure 4: τ and c for the 5% of the maps with the
lowest TE for the six data sets and lattice of size
20x20.

Figure 5: Frequency of maps (y axis) for TE (x
axis) for lattices of size 30x30 for SOM (squared)
and SOM-RP (cross).

Figure 6: Weight folding in the SOM (left) and
in the SOM-RP (right) for t = 2, 4, 6, 10 for the
ring data set (only included as an example for
weight folding). It is observed that the SOM-RP
presents, in general, smooth borders that fit the
input vectors. SOM-RP parameters were τ = 2
and d = 2.

which are further left than the spikes present in
the SOM-RP frequency histogram. This means
that the most likely TE of the SOM is lower than
the most likely TE of the SOM-RP.

This drawback is of importance if a small
number of maps are made, however, as can be seen
above, if a large enough number is made and the
map with lowest TE is chosen, then the SOM-RP
is very likely to produce a map with significantly
lower TE than SOM.

Folding in the SOM-RP is affected as shown
in fig. 6. It is observed that the SOM-RP ap-
proximates better the ring data set as it shows
smooth borders which contrast with the borders
in the SOM weights. This is a consequence of
the refractory period in which neurons enter af-
ter being affected. When a neuron enters this pe-
riod, some of its neighbors may be able to learn
the new input. Thus, the network learning may
be improved if some of the neurons do not take
part in the process for some periods of time. It
is also observed that the bottom-right corner is
not properly folded, once again, as a consequence
of the refractory period. The refractory period
may help the network to properly fold, but, if τ
is large enought and the area of influence is also
large, then the folding may be disrupted.

The activity patterns in the SOM are radial
and symetrical, which is different from the pat-
terns formed in SOM-RP, as shown in fig 7. The
BMU affects all its neighbors, but only a subset
of them (defined by the d parameter, d = 3 in the
example) will become inactive for τ input vectors
(τ = 2). Once τ input stimulus are maped, the re-
fractory neurons become susceptible and may be
affected by BMUs or even become BMU. Neurons
in BMU’s neighborhood might not modify their
weight vector, as they might be in a refractory pe-
riod. Closer neurons to BMU may be refractory,



Figure 7: Activity patterns in the SOM-RP for
consecutive times. Non radial patterns of activity
are formed because of the refractory period. Here,
the parameters for the SOM-RP were τ = 2 and
d = 3 in a 20x20 lattice.

while farther neurons (also included in neirghbor-
hood) may be affected. This long-distance effect
has biological foundations.

4 Discusion and conclusions

Map formation is possible when homogeneus re-
fractory periods are included in neurons. We are
interested in studying the properties of SOM when
a refractory period is included in its neurons. Al-
though it is not possible to give a recipe for τ , d
and h values, we have shown it is possible that the
map folds properly to approximate input space,
which is an important restriction to be included
in the SOM if is to be studied as a more realistic
model of the brain cortex.

In nature, refractory periods are important
as they allow neurons to repolarize and become
susceptible for further activation. In general, it
had been identified as a restriction in neurons that
should not be considered in artificial models, no
matter they are supposed to explain the general
aspects of self-organization in the brain. Here, we
have incorporated a homogeneous refractory pe-
riod and the results are, we believe, interesting,
in the sense that are equivalent (in terms of er-
rors) to those obtained by SOM, but achieved by
following a different and more realistic route.

The fact that learning took place in the SOM-

RP, reafirms the fact that the learning process
is a distributed one, for modifications in ’small’
regions of the lattice do not affect the overall
behaviour of the map. This, of course, can be
seen with many other modifications to the origi-
nal SOM. It is however of interest, that the overall
behaviour of the map is little affected by phenom-
ena which are not instantaneous: for several values
of τ the properties of the SOM are not dramati-
cally altered, which suggests that the distribution
of information and processing capabilities in the
SOM are robust enough as to go arround lasting
obstacles.

The existence of a refractory period drives
the BMU arround the grid, forcing it to fall into
non-recently visited sites. Since in general τ will
be significantly smaller than the number of input
vectors, this is translated into further spreading
the neurons associated with each stimulus. This
will in turn make the convergence of the mapping
slower. This is not necesarly a drawback, for it
also makes the distribution of the weight vectors
more uniform in the input space, thus allowing a
better mapping.

Non-symetrical activity patterns are present
in the cortex, but the SOM fails to reproduce
them. With the proposed SOM-RP, those pat-
terns, as well as long-distance influence, are
achieved.
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